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A system with aftereffect is considered. The state of the system at any instant of time t depends not only on its phase coordinates 
at the instant t but also on the phase coordinates at the preceding instants of time [~(t), t], where ~ t )  ~< t, i = 1, 2, . . . .  n (in 
the special case when ~(t) - to for i = 1, 2, . . . ,  n). The stability of such systems is investigated using Lyapunov's second method. 
© 1997 Elsevier Science Ltd. All rights reserved. 

We will investigate the stability of motion corresponding to the zeroth solution of the equation 

d x  t 
~' t  = A(t)x + J K(t, s, x(s))ds + F(x, u, t), u ¢ R" (1) 

r(t) 

where ~(t) ~< t, ~{0) = ~0 the matrixA(t) = (ai i ( t )}  and the vector function F(t) = (Tl(t), • • • ,  yn(t)), 
K(t, s, x(s)) = (K10', s, x ( s ) ) , . . . ,  Kn(t ,  s, x(s))), F(x, u, t) = (fl(x, u, t ) , . . .  ,fn(x, u, t)) are continuous 
in the region fll x 1,~2 x [0, oo); x = ( x l , . . . ,  xn) ,  u = (u l  . . . .  , un); F(0, u, t) -- 0. 

Here  fll  is a certain neighbourhood of the point x = 0, O,2 is the region in which the vector u(t) = 
(Ul ( t ) , . . . ,  Un(t))  is defined, and the subscripts i , j  take values 1, 2, . . . .  n. 

Note that the case considered in [1], when the control vector u(t) is specified by analytic functionals, 
represented by absolutely converging Volterra-Frechet series 

U / ~ .  }...i ,q(",(,.Sl . . . . .  ,,).,,, (,,)..:,,,, . . . . .  

t=lJl ...Jk =10 0 

where K/(k)( t ,  s l ,  • • . ,  Sk) are  continuous functions specified in the set Jk' = {(t, sl ,  • . . ,  Sk) ~ R k+l, 
0 ~< s, ~< t ~< oo, r = 1, 2, . . . .  k } ,  is also included in the formula specifying the control vector described 
above. 

Equations of the form (1) find application in problems of viscoelasticity [2, 3], aeroelasticity [4], and 
also when investigalting economic models [5]. 

When ~(t) - to, the analytic vector function F(x, u, t) and the stability of Eq. (1) with a linear integral 
operator were investigated in [1] using Lyapunov's first method. 

The stability of the equations with aftereffect has been considered in many publications [6-8]. A method of  
investigating the stability of systems of differential equations in the critical case when there is a single zero root 
was proposed in [9, 10], based on an investigation of the spectrum of the Jacobian on the fight-hand side of the 
equation in the neighl~eurhood of the perturbed solution. This method was extended in [11, 12] to differential and 
difference equations a~d to all kinds of critical cases. 

Below it is extended to systems described by equations of the form (1). 

Equation (1) will be investigated in the n-dimensional space R n. We can take one of the fol lowing 
as the norm in Rn 

F n 21,'~ N 
Ilxll, =Lt~=llxkl j , Ilxll2=maxlxil, Ilxll3=k=,Y~lxk.I 
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We will use the  following notation below: R(a ,  r) = { x  ~ Rn : I I x - a I I r}, S(a, r) = {x  ~ Rn : 
I I x .  a [ [ = r}, ReA = A R  = (A  + A*)/2, AA is the logarithmic norm of the linear operatorA, defined 
in [ !3]by the ,expression AA = limh~0(I [ I + hA I I - X)/h. 

Suppose r > 0. We will denote by d:(t) the arbitrary continuously differentiable curve ~(t) = 
(~l,(t), • • •, g}n(t)),:which belongs .to the sphere R(0, r). We will fix the arbitrary instant of time T. 

We,introduce the vector C = col (cl . . . . .  c~) where ci = d:I(T). We also introduce the following notation 

B(C, T) = {b0(C, T)}, H(C, T) = {h#(C, T)} 

I x i ( T ) l ( m c j ) ,  c j  rgO I" 

b#(C'T)=lO't, cj=O' zi(T)= ~gi(T"c'dP(x))dx 
yi(T) 

[[F//(0 ..... O, cj,cj+ I ..... Cn,u(T),T)- 
h i j ( C , T )  = ~-F/(O ..... 0,0, cj+ I . . . . .  cn ,u (T) ,T ) ] l c  j ,  c j  # 0 

L O, c j  = 0  

where m is the number of non-zero coordinates of the vector C. 

Theorem  1. Suppose, for any fixed value of t, 0 ~< t ~< **, for any non-zero vector C ~ R(O, r), where 
r > O, for any continuously differentiable curve  ~(t)  = (d:l(t), . . . , ~n(t)),  belonging to the sphere 
R(O, r), and such that ~i(t) = ci, the following condition is satisfied 

A(A(t) + B(C, t) + H(C, T)) < 0, (A(A(t) + B(C, t) + H(C, T)) < -  ct, ct = const > 0) 

Then the trivial solution of Eq. (1) is stable (asymptotically stable). 

Proof. We fix an arbitrary !"1 < r and we will show that when the conditions, of the theorem are satisfied 
each solution of Eq. (1), in which the values of the functionx(t) for ~ ~ t ~< 0 are situated in the sphere 
R(0, rl), does not leave this sphere. We will assume the opposite: suppose that at the instant of time 
t = T the trajectory x(t) of Eq. (1) leaves the sphere R(0, r D. 

We introduce the following notation 

dil =ail  (T )  + Zi (T) lmxt  ( T )  + [ Fi(O . . . . .  O, x t ( T )  . . . . .  x n (T) ,  u(T), T) - 

-~ (0 ..... 0, 0, xt+ l (T) ..... x n (T), u(T), T)]/x t (T) 
n n 

gl (t, x(t)) = ~ (air (t) - all (T))x I (t) - ~, Zi (T) (xt (t) - xt(T)) 
I=l t=! taxi(T) 

_ F/(x I ,(T) ..... x n (T), n(T), T) - F/(0, x 2 (T) ..... x n (T), u(T), T) (x I (t) - x t (T)) - 
x I (T) 

-...- F/(0 ..... 0, xn(T), u(T), T)- F/(0 ..... 0, u(T), T) (x n (t)- xn(T)) + 
x,(T) 

+ F / ( x ( t ) ,  u(t) ,  t)  - F / (x (T) ,  u (T) ,  T)  

where m is the number of non-zero numbers amongxl(T) . . . . .  xn(T). 
Note that if for a certain I (1 ~< 1 ~< n) xl(T) = 0, then in the notation da and gi terms in which the 

denominator is equal to xl(T), are omitted. 
Then, when t I> Twe can represent the system of equations (1) in the form 

dx/dt=Dx+G(t,x(t)), D={do}, G(t,x(t))=col(gl(t,x(t)) ..... g~(t,x(t))) (2) 

The solution of Eq. (2) when t I> T has the form 

t 

x(t) = e n ~ ' - r ) x ( T )  + ~ en~t-S)G(s" x ( s ) ) d s  
T 

(3) 
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It follows from the structure of the operator G(t, x(t)) that for any e(e > 0) as small as desired we 
can choose a value of At such that for T ~< t ~< T + At I I G(t, x(t)) [ I ~< El [ x(t) [ I. 

Changing in EqL. (3) to norms, we have for T ~< t ~ T + At 

t 

IIx(t)ll< e ^ ~ ° ) ¢ t - r ) x ( T ) + e ~ e ^ ( ° ) ( t - ' O I I x ( s ) l l d s  (4) 
T 

We introduce the new variable ¥(t)  = e-^W)t I I x(t) [ l- Inequality (4) then takes the form 

t 

~ (  t) < v ( T )  + v.J V ( s ) d s  (5) 
T 

Applying the Gronwall-Bellman ineq,  ality to (5) and reverting to the norm I I x(t) I I, it can be shown 
that for T ~< t ~< T + At the following estimate holds 

IIx(t)ll < exp ((A(D) + E)(t- T))llx(7~ll 

Since by the conditions of the theorem the logarithmic norm is negative, then taking e such that A(D) 
+ e ~< 0 and choosing from it the corresponding value of At*, it can be shown that in the time interval 
[T, T + At*] the trajectory of the solution of Eq. (1) does not leave the sphere S(0, rl). The stability of 
the solution of Eq. (1) follows from this contradiction. 

We can similarly prove the asymptotic stability. The theorem is proved. 

Note. If the system of equations (1) is investigated in Euclidean space E,, then in formulating the theorem the 
condition 

A(A(t) + B(C, t) + H(C, D) < 0(A(A(t) + B(C, t) + H(C, T)) < - a)  

can be replaced by the following 

o (Re (A(t) + B(C, t) + H(C, t))) < 0 o ((Re (A(t) + B(C, t) + H(C, t))) < - a)  

We will consider some classes of problems for which the conditions of Theorem 1 are easily verified. 
We will consider as one of these classes equations of the form (1) in which 

sUPtost<..maxi-i alt-  ¥i(t)l< H - -  ? . . . ,  (6) 

Suppose r > 0. We fix an arbitrary value of T. Suppose g(T) = (~I(T) . . . .  , ~(T)) ,  ~(T) ~ (~(T), T). 
Suppose "q = Oh . . . . .  ,11,,) is an arbitrary point situated inside the sphere S(0, r), while s(r) = 
( s l ( r ) , . . . ,  sn(r)) is an arbitrary point situated on the sphere surface S(0, r). We introduce the following 
notation 

D = {dit }, d u = dit(T,~i(T),vt, s ( r ) ) = a i i ( T ) +  Ki (T ,~i (T) ,v l ) (T-Ti (T) ) / (mst ( r ) )+  

"4"[ F i (0 ..... O, $f(r) ..... sa (P), u(T), 7") - F i (0 ..... 0, $l+I (r) ..... s n (r), u(T), T)]/s t (r) 

where m is the nmnber of non-zero coordinates of the vector s(r) = ( s l ( r ) , . . . ,  s , (r ) ) .  

T h e o r e m  2. Suppose conditions (6) are satisfied. If for fairly small 0 < r ~< r* and arbitrary T(to <- T 
< oo), g(T), 11 ¢ R(0, r), s(r) ¢ S(0, r) the logarithmic norm of the matrix D is negative (less than - 
a > 0), the solution of Eq. (I)  is stable (asymptotically stable). 

Proof. We will fvc an arbitrary fairly small value of r(0 < r ~ r*) and show that when the conditions 
of  the theorem are satisfied each solution of Eq. (1), in which the values of the function x(t) for 130 
t ~< 0 are situated ia the sphere R(0, r), does not leave this sphere. We will assume the opposite: at the 
instant of time t = T t h e  trajectory x(t) of  Eq. (1) leaves the sphere R(0, r). We will denote the point 
of  intersection of file trajectoryx(t) with the sphere S(0, r) by s(r) = ( s l ( r ) , . . . ,  s,,(r)). Using the theorem 
on the mean we have g/(T) = K/(T, ~/(T), r l ) ( T -  ~(T). 

Then the ith equation of the system of equations (1) can be represented in the form 
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dx i n 

dt' " = t=l -~ditxt  ( t ) +  g i ( t ' x ( t ) )  

t l  

gi (t, X(t)) = ~, (air (t)  - all ( T ) ) x  I ( t )  - 
I=1 

-Y.tn=l K i (T ,  ~ i (T ) , r l ) (T  - T i ( T ) ) ( x t ( t )  - s t ( r ) ) l (ms t ( r ) )  + 

+ ( ) ~ i ( t ) -  K i ( T , ~ i ( T ) , l l ) ( T -  Y i ( T ) ) ) - [  Fi(Sl(r)  . . . . .  sn(r) ,  u ( T ) , T ) -  

- ~ ( 0 ,  s 2 (r) ..... s n (r), u(T), T)](x I (t) - s I (r))/s I ( r ) - . . . - [ ~ ( 0  . . . . .  O, s n (r),  u(T), T) - 

-F/(0 ..... 0, 0, u(T), T)](x n (t)- s n (r))/s n (r) + [F/(x(t), u(t), t) - F/(s(r ), u(T), T)] 

When t I> T the system of equations (1) can be represented in the form 

d x  I dt  = D x  + G ( t , x ( t ) ) ,  G(t,x(t))  - col(g! (t, x(t)) ..... g~ (t, x(t))) 

Repeating the discussion employed in proving Theorem 1, we complete the proof of Theorem 2. 

Consider the following model example 

ds = -x( t ) + f: . x~+~ f x )sgn( xf x ) )a~, ~ > 0 (7) 
dt 

It can be seen that d(T) can take one of the following values: -1 + rl 1 + e H f l , -  1 - ~1 +eHr-1. In both eases A(d(T)) 
< -1  + I 11 l+eHr-1 [. Since by construction T! < r, we have A(d(T)) < -1 + [ rltH [ and it remains less than 
--~t(cz = const > 0) for any finite H and sufficiently small values of r. Consequently, the solution of Eq. (7) is 
asymptotically stable. 

As another class we will consider equations of  the form 

t 

d x  a ( t ) x ( t ) +  F ( x ( t ) , J  K ( t , s , x ( s ) ) d s )  (8) 
dt o 

where F(x ,  y )  is a continuous function of both variables. 
For simplicity we will assume that Eq. (8) is scalar. It can be seen from further calculations that the 

conditions of  stability of  the solution of  Eq. (8) derived below can be extended to similar systems of 
integro-differential equations. 

We will impose the following conditions on the function F(x ,  y): (1) F ( - x ,  y )  = - F(x ,  y ) ,  (2) F(0, 
y ) - 0 .  

Suppose r is a fairly small positive number. We will denote by sl(r) points lying on the sphere surface 
S(0, r) in the space R1, i.e. s l (r)  = +- r. We establish a correspondence between a certain number 
~l(t) ~ (0, t) and each value of t. Suppose 111, 132 are arbitrary numbers situated in the interval (-r, r), 
where rh, 112 ~ 0 when sl(r) = r and ~1, r12 ~< 0 when s l (r )  = -r.  We introduce the following notation 

I a(T)+ F('ql,TK(T,~l,rl2))l'ql, Ir121< Till, ~l ~ 0 
d ( T )  = La(T), rl~ = 0 

Theorem 3. Suppose ris an arbitrary positive fairly small number. If for any T(0 < T < -0) and arbitrary 
~(T) ~ (0, T), ~1, "q2 ~ S(0, r)(Th • ~12 >I 0, I ~2 [ ~< [ 131 I ) the condition d(T) < 0(d(T) < -Ix, ¢( > 0) is 
satisfied, the solution of  Eq. (8) is stable (asymptotically stable). 

Proof. We will assume, to fix our ideas, that x(0) = x0 > 0. Suppose that at the instant of time T the 
trajectory of  the solution of Eq. (8) leaves the sphere S(0, r), i.e. it passes through the point r on the 
O X  a~ds. T h e  trajectory cannot pass through the point - r  since x0 > 0, while by condition (2), imposed 
on the function F(x,  y), a trajectory beginning in the segment [0, r] cannot transfer into the interval 
[-¢, 0). 

When t ~> T we will represent Eq. (8) in the form 
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d r  
- "  = d ( T ) x ( t )  + . ( a ( t ) -  a(T) )x ( t )  + F(r,  W ( T ) ) -  F(r,  TK(T,  ~JTI2 ))x(t) /r  + 
(It 

t 

+F(x(r ) ,  ¥ ( t ) ) -  F(r,  v(T) ) ,  ¥ ( t )  = ~ K(t ,  s, x (s ) )ds  
o 

Repeat ing  the discussion carr ied ou t  when  proving T h e o r e m  1, and taking into account  the  fact tha t  
the trajectory o f  Eq. (8) can lie only in the segment  [0, r], we can show that  the theorem is true. 
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